Prof. Dr. Stanislav Kopriva

Research focus

We are interested in the mechanisms by which plants control the uptake and utilization of mineral nutrients and the interconnection of nutrient assimilation with plant metabolism and development. We use a combination of biochemical, genetic and physiological approaches and exploit natural variation. The three major areas of our research are (1) the molecular mechanisms of regulation of sulfur metabolism, (2) the adaptation of mineral nutrition through evolution of C4 plants, and (3) the interaction of plants with rhizobacteria and their contribution to plant nutrition.

Most important publications

  1. Koprivova A, Kopriva S (2022) Plant secondary metabolites altering root microbiome composition and function. Curr Opin Plant Biol 67:102227. doi: 10.1016/j.pbi.2022.102227.
  2. Dietzen C, Koprivova A, Whitcomb SJ, Langen G, Jobe TO, Hoefgen R, Kopriva S (2020) The Transcription Factor EIL1 Participates in the Regulation of Sulfur-Deficiency Response. Plant Physiol 184(4):2120-2136. doi: 10.1104/pp.20.01192.
  3. Koprivova A, Schuck S, Jacoby RP, Klinkhammer I, Welter B, Leson L, Martyn A, Nauen J, Grabenhorst N, Mandelkow JF, Zuccaro A, Zeier J, Kopriva S (2019) Root-specific camalexin biosynthesis controls the plant growth-promoting effects of multiple bacterial strains. Proc Natl Acad Sci U S A 116(31):15735-15744. doi: 10.1073/pnas.1818604116.
  4. Gerlich SC, Walker BJ, Krueger S, Kopriva S (2018) Sulfate Metabolism in C4 Flaveria Species Is Controlled by the Root and Connected to Serine Biosynthesis. Plant Physiol 178(2):565-582. doi: 10.1104/pp.18.00520.
  5. Aubry S, Smith-Unna RD, Boursnell CM, Kopriva S, Hibberd JM (2014) Transcript residency on ribosomes reveals a key role for the Arabidopsis thaliana bundle sheath in sulfur and glucosinolate metabolism. Plant J 78(4):659-673. doi: 10.1111/tpj.12502.
  6. Koprivova A, Giovannetti M, Baraniecka P, Lee BR, Grondin C, Loudet O, Kopriva S (2013) Natural Variation in the ATPS1 Isoform of ATP Sulfurylase Contributes to the Control of Sulfate Levels in Arabidopsis. Plant Physiol 163(3):1133-1141. doi: 10.1104/pp.113.225748.
  7. Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011) Sulfur Assimilation in Photosynthetic Organisms: Molecular Functions and Regulations of Transporters and Assimilatory Enzymes. Annu Rev Plant Biol, Vol 62 62:157-184. doi: 10.1146/annurev-arplant-042110-103921.
  8. Mugford SG, Lee BR, Koprivova A, Matthewman C, Kopriva S (2011) Control of sulfur partitioning between primary and secondary metabolism. Plant J 65(1):96-105. doi: 10.1111/j.1365-313X.2010.04410.x.
  9. Mugford SG, Yoshimoto N, Reichelt M, Wirtz M, Hill L, Mugford ST, Nakazato Y, Noji M, Takahashi H, Kramell R, Gigolashvili T, Flügge UI, Wasternack C, Gershenzon J, Hell R, Saito K, Kopriva S (2009) Disruption of Adenosine-5′-Phosphosulfate Kinase in Arabidopsis Reduces Levels of Sulfated Secondary Metabolites. Plant Cell 21(3):910-927. doi: 10.1105/tpc.109.065581.
  10. Loudet O, Saliba-Colombani V, Camilleri C, Calenge F, Gaudon V, Koprivova A, North KA, Kopriva S, Daniel-Vedele F (2007) Natural variation for sulfate content in Arabidopsis is highly controlled by APR2. Nat Genet 39(7):896-900. doi: 10.1038/ng2050.