Prof. Dr. Miltos Tsiantis

Research focus

We seek to address two fundamental questions in biology: how do biological forms develop and what is the basis for their diversity? To address these questions we first aim to elucidate how genotypes are translated into organismal forms through the process of morphogenesis. Secondly, we seek to conceptualize how the balance of conservation versus divergence in morphogenetic regulatory networks yields different organismal forms during evolution. We approach these problems using genetics, while also employing biological imaging, genomics and computational modelling and we are currently investigating diversification of different aspects of shoot and leaf morphology. Our research is empowered by the use of Cardamine hirsuta an A.thaliana relative we developed into a model system for studying evolution of plant form.

The ten most important publications

  1. Vuolo F, Mentink RA, Hajheidari M, Bailey CD, Filatov DA, Tsiantis M. Coupled enhancer and coding sequence evolution of a homeobox gene shaped leaf diversity.  (2016) Genes Dev. 30, 2370-2375.
  2. Gan X, Hay A, Kwantes M, Haberer G, Hallab A, Ioio RD, Hofhuis H, Pieper B, Cartolano M, Neumann U, Nikolov LA, Song B, Hajheidari M, Briskine R, Kougioumoutzi E, Vlad D, Broholm S, Hein J, Meksem K, Lightfoot D, Shimizu KK, Shimizu-Inatsugi R, Imprialou M, Kudrna D, Wing R, Sato S, Huijser P, Filatov D, Mayer KF, Mott R, Tsiantis M. (2016)  The Cardamine hirsuta genome offers insight into the evolution of morphological diversity. Nat Plants 2, 16167.
  3. Rast-Somssich, M.I., Broholm, S., Jenkins, H., Canales, C., Vlad, D., Kwantes, M., Bilsborough, G., Dello Ioio, R., Ewing, R.M., Laufs, P., et al. (2015). Alternate wiring of a KNOXI genetic network underlies differences in leaf development of A. thaliana and C. hirsuta. Genes Dev 29, 2391-2404
  4. Cartolano, M., Pieper, B., Lempe, J., Tattersall, A., Huijser, P., Tresch, A., Darrah, P. R., Hay, A., and Tsiantis, M. Heterochrony underpins natural variation in Cardamine hirsuta leaf form (2015) Proc. Natl. Acad. Sci. USA 112, 10539-10544.
  5. Vlad D, Kierzkowski D, Rast MI, Vuolo F, Dello Ioio R, Galinha C, Gan X, Hajheidari M, Hay A, Smith RS, Huijser P, Bailey CD, Tsiantis M. (2014) Leaf shape evolution through duplication, regulatory diversification, and loss of a homeobox gene. Science 343, 780-3.
  6. Dello Ioio, R., Galinha, C., Fletcher, A.G., Grigg, S.P., Molnar, A., Willemsen, V., Schered, B., Sabatini, S., Baulcombe, D., Maini, P.K. and Tsiantis, M. (2012) A PHABULOSA/Cytokinin Feedback Loop Controls Root Growth in Arabidopsis. Current Biology 22,1699-1704
  7. Bilsborough, G., Runions, A., Barkoulas, M., Jenkins, H., Hasson, A., Galinha, C., Laufs, P., Hay, A., Prusinkiewicz, P. and Tsiantis, M. (2011) Model for the regulation of Arabidopsis thaliana leaf margin development. PNAS 108, 3424-3429
  8. Grigg, S., Galinha, C., Kornet, N., Canales, C., Scheres, B.  and Tsiantis, M. (2009) Repression of apical homeobox genes is required for Arabidopsis embryonic root development. Current Biology, 19, 1485-1490
  9. Barkoulas, M. Hay, A. Kouyioumoutzi, E and Tsiantis, M. (2008).  A developmental framework for dissected leaf formation in the Arabidopsis relative Cardamine hirsuta. Nature Genetics 40, 1136 – 1141.
  10. Hay, A. and Tsiantis, M. (2006) The genetic basis for differences in leaf form between Arabidopsis and its wild relative Cardamine hirsuta. Nature Genetics 38, 942-947
Prof. Dr. Miltos Tsiantis
CEPLAS Miltos Tsiantis


+49221 5062106

Department of Comparative Development and Genetics
Max Planck Institute for Plant Breeding Research

Carl-von-Linné-Weg 10

50829 Cologne
Heinrich Heine University
University of Cologne
Max Planck Institute for Plant Breeding Research
Forschungszentrum Jülich